Novel Heuristic Algorithm for Large-scale Complex Optimization
نویسندگان
چکیده
Research in finance and lots of other areas often encounter large-scale complex optimization problems that are hard to find solutions. Classic heuristic algorithms often have limitations from the objectives that they are trying to mimic, leading to drawbacks such as lacking memory-efficiency, trapping in local optimal solutions, unstable performances, etc. This work considers imitating market competition behavior (MCB) and develops a novel heuristic algorithm accordingly, which combines characteristics of searching-efficiency, memory-efficiency, conflict avoidance, recombination, mutation and elimination mechanism. In searching space, the MCB algorithm updates solution dots according to the inertia and gravity rule, avoids falling into local optimal solution by introducing new enterprises while ruling out of the old enterprises at each iteration, and recombines velocity vector to speed up solution searching efficiency. This algorithm is capable of solving large-scale complex optimization model of large input dimension, including Over Lapping Generation Models, and can be easily applied to solve for other complex financial models. As a sample case, MCB algorithm is applied to a hybrid investment optimization model on R&D, riskless and risky assets over a continuous time period.
منابع مشابه
A novel heuristic algorithm for capacitated vehicle routing problem
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic ...
متن کاملA PFIH-Based Heuristic for Green Routing Problem with Hard Time Windows
Transportation sector generates a considerable part of each nation's gross domestic product and considered among the largest consumers of oil products in the world. This paper proposes a heuristic method for the vehicle routing problem with hard time windows while incorporating the costs of fuel, driver, and vehicle. The proposed heuristic uses a novel speed optimization algorithm to reach its ...
متن کاملA TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...
متن کاملSolving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm
The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016